Detaljni izvedbeni plan

Akademska godina 2023. / 2024. Semestar Ljetni
Studij:

Sveučilišni diplomski studij povijesti, Sveučilišni diplomski studij sociologije, Sveučilišni diplomski studij komunikologije
Godina studija:

Sveučilišni diplomski studij povijesti: 1., 2.;
Sveučilišni diplomski studij sociologije: 1., 2.;
Sveučilišni diplomski studij komunikologije: 1., 2.;
Usmjerenje Znanstveno istraživanje medija i odnosi s javnošću, Interkulturalna komunikacija i novinarstvo, Upravljanje i javne politike

I. OSNOVNI PODACI O PREDMETU

Naziv predmeta Multivariate statistical methods
Kratica predmeta IZBD252 Šifra predmeta 252578
Status predmeta Izborni ECTS bodovi 6
Preduvjeti za upis predmeta Nema
Ukupno opterećenje predmeta
Vrsta nastave Ukupno sati
Predavanja 30
Seminari 30
Mjesto i vrijeme održavanja nastave HKS – prema objavljenom rasporedu

II. NASTAVNO OSOBLJE

Nositelj predmeta
Ime i prezime Luka Šikić
Akademski stupanj/naziv Doktor znanosti Izbor Docent
Kontakt e-mail luka.sikic@unicath.hr Telefon +385 (1)
Konzultacije Prema objavljenom rasporedu

III. DETALJNI PODACI O PREDMETU

Jezik na kojem se nastava održava Engleski
Opis
predmeta

Course Objectives:

This course covers advanced empirical research design, including developing questions, creating hypotheses, designing research, and analyzing data. Students will gain hands-on experience using statistical software and learn to properly analyze data using appropriate statistical tests. The course will also cover effective communication of experimental findings, helping students develop skills to communicate their research findings to different audiences effectively. By the end of the course, students should be able to design and conduct their experiments and analyze the data they collect using statistical techniques appropriate for their research questions. They should also effectively communicate their experimental findings to scientific audiences. This will allow them to stay up-to-date with the course content and participate in scientific discussions.

In addition to attending lectures and seminars, students will be required to complete a data analysis project, which will be presented as an oral seminar presentation. This project will allow students to apply the data science skills they have learned to a real-world social science research problem. To complete the course, students must accumulate at least 70% of their grade through class activities, including midterm exams and written and orally presented seminar projects. This will ensure that students regularly engage with the course content and actively work towards mastering the skills and concepts covered in the course.

Course Content:

Introduction to Modern data. Introduction to programming language for statistics. Statistics refresher. Exploratory Data Analysis (Principal Component Analysis, Factor Analysis, Cluster Analysis). Confirmatory Data Analysis (Multiple Linear Regression, Survival Analysis, Basics of Machine Learning, Network Analysis, Time Series Analysis, Text Analysis, Basics of Natural Languange Processing). Empirical Project.

Očekivani ishodi
učenja na razini
predmeta
1. Develop a thorough understanding of multivariate statistical techniques, including their theoretical foundations and practical applications. 2. Learn to apply multivariate statistical techniques to real-world data analysis problems and research questions. 3. Understand the assumptions underlying multivariate statistical methods and how to assess their validity. 4. Gain experience in using statistical software to analyze multivariate data. 5. Develop skills in interpreting and presenting results of multivariate statistical analyses to various audiences.
Literatura
Obvezna

Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis. Pearson.

Dopunska

Stevens, J. P. (2009). Applied Multivariate Statistics for the Social Sciences. Routledge.

 Izenman, A. J. (2013). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer.

Sharma, S. (1996). Applied Multivariate Techniques. John Wiley & Sons.

Bartholomew, D. J., & Steele, F. (2008). The Analysis of Multivariate Social Science Data. CRC Press.

Način ispitivanja i ocjenjivanja
Polaže seDa Isključivo kontinuirano praćenje nastaveNe Ulazi u prosjekDa
Preduvjeti za dobivanje
potpisa i polaganje
završnog ispita

Attendance is crucial for success in this course, and students are expected to attend at least 70% of lectures and seminar sessions.

Način polaganja ispita

Class activities: Midterm exam (written), seminar presentation (written and oral) and final exam.

Način ocjenjivanja

 

Final course grade is based on 100 points earned through student’s continuous involvement in class activities:

Fair (2) – 50 to 64 points

Good (3) – 65 to 79 points

Very good (4) – 80 to 89 points

Excellent (5) – 90 to 100 points

Earning credits:

Class activities contribute to 50% of the grade:

Seminar – maximum 40 points

Seminar presentation – maximum 10 points

Final exam contributes to 50% of the grade:

Final exam – maximum of 50 points (50% of correct answers necessary for passing)

Detaljan prikaz ocjenjivanja unutar Europskoga sustava za prijenos bodova
VRSTA AKTIVNOSTI ECTS bodovi - koeficijent
opterećenja studenata
UDIO
OCJENE

(%)
Pohađanje nastave 1.5 0
Kolokvij-međuispit 1.8 40
Seminarski rad 0.9 20
Seminarsko izlaganje 0.45 10
Ukupno tijekom nastave 4.65 70
Završni ispit 1.35 30
UKUPNO BODOVA (nastava+zav.ispit) 6 100
Datumi kolokvija The first exam in the 7th week of the course and the second exam in the 15th week.

Datumi ispitnih rokova Prema objavljenom rasporedu

IV. TJEDNI PLAN NASTAVE

Predavanja
Tjedan Tema
1. Overview of the Course and Student Obligations
2. Fundamentals of the R Programming Language
3. Descriptive Statistics Refresher
4. Inferential Statistics Refresher
5. Principal Component Analysis (PCA)
6. Factor Analysis
7. Cluster Analysis
8. Multivariate Regression Analysis
9. Content (text) Analysis
10. Survival Analysis
11. Network Analysis
12. Time Series Analysis
13. Machine Learning
14. Conducting Empirical Research
15. Final exam
Seminari
Tjedan Tema
1. Overview of the Course and Student Obligations
2. Fundamentals of the R Programming Language
3. Descriptive Statistics Refresher
4. Inferential Statistics Refresher
5. Principal Component Analysis (PCA)
6. Factor Analysis
7. Cluster Analysis
8. Multivariate Regression Analysis
9. Content (text) Analysis
10. Survival Analysis
11. Network Analysis
12. Time Series Analysis
13. Machine Learning
14. Conducting Empirical Research
15. Final exam