Poster prezentacija na 7. hrvatskom kongresu farmakologije (Zagreb, 18.-21. rujna 2013.) BENEFICIAL EFFECT OF POLYPHENOL QUERCETIN AGAINST OXIDATIVE INJURY IN THE CULTURE OF P19 NEURONS IS MEDIATED BY THE PREVENTION OF CASPASE-INDEPENDENT APOPTOSIS <u>Jazvinšćak Jembrek M</u>¹, Vuković L², Radovanović V³, Erhardt J³ and Oršolić N³ ## Maja.Jazvinscak.Jembrek@irb.hr Introduction: Neuronal loss is a key observation of neurodegeneration implicated in the dysfunctions of the mammalian brain in physiological aging and numerous diseases and injuries. It is hypothesized that a dietary polyphenol supplementation could be an effective therapeutic strategy in minimizing the undesirable neuronal death. Materials and methods: Effects of ubiquitous flavonoid quercetin on neuronal death induced by exposure to 150 μ M hydrogen peroxide (H₂O₂) for 24 hours were studied in the culture of P19 neurons. Reverse transcriptase PCR and western blot analysis were used to monitor changes in Bcl-2, Bax and PARP expression following H₂O₂ treatment. Changes in nuclear condensation were observed by Hoechst staining, while activities of key apoptotic markers caspase-3 and -7, and lactate dehydrogenase (LDH) activity were performed using commercially available assays (Promega). Results: Exposure to H_2O_2 decreased neuronal viability without changes in plasma membrane integrity, induced changes in chromatin condensation, slightly decreased Bcl-2 expression and moderately increased caspase-3/7 activity. Moreover, H_2O_2 induced strong PARP overexpression without PARP cleavage, altogether indicating a programmed type of cell death distinct from classical apoptosis. Presence of quercetin attenuated the toxic effects of H_2O_2 by preventing chromatin condensation and H_2O_2 -induced changes in caspase activity, as well as changes in Bcl-2 and PARP expression. Conclusion: The obtained results suggest that the neuroprotective effect of polyphenol quercetin is related to its ability to prevent caspase-independent, PARP-dependent programmed cell death cascade. Hence, beneficial effects of quercetin might be assumed for the prevention of oxidative-stress driven neuronal loss in human aging and neurodegenerative diseases. ¹Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia ²Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia ³Department of Animal Physiology, Faculty of Science, University of Zagreb, Croatia